余弦定理训练题_高二数学

时间:2021-06-27 14:30:37 作者: 字数:5598字

  余弦定理,是描述三角形中三边长度与一个角的余弦值关系的数学定理,是勾股定理在一般三角形情形下的推广。下面是考试啦小编整理了余弦定理训练题。希望对广大考生在学习过程中有所帮助!

  余弦定理训练题

  1.在△ABC中,已知a=4,b=6,C=120°,则边c的值是(  )

  A.8          B.217

  C.62 D.219

  解析:选D.根据余弦定理,c2=a2+b2-2abcos C=16+36-2×4×6cos 120°=76,c=219.

  2.在△ABC中,已知a=2,b=3,C=120°,则sin A的值为(  )

  A.5719 B.217

  C.338 D.-5719

  解析:选A.c2=a2+b2-2abcos C

  =22+32-2×2×3×cos 120°=19.

  ∴c=19.

  由asin A=csin C得sin A=5719.

  3.在△ABC中,若B=60°,2b=a+c,试判断△ABC的形状.

  解:法一:根据余弦定理得

  b2=a2+c2-2accos B.

  ∵B=60°,2b=a+c,

  ∴(a+c2)2=a2+c2-2accos 60°,

  整理得(a-c)2=0,∴a=c.

  ∴△ABC是正三角形.

  法二:根据正弦定理,

  2b=a+c可转化为2sin B=sin A+sin C.

  又∵B=60°,∴A+C=120°,

  ∴C=120°-A,

…… 此处隐藏1395字 ……

  所以cos C=12,所以C=60°.

  12.在△ABC中,b=asin C,c=acos B,试判断△ABC的形状.

  解:由余弦定理知cos B=a2+c2-b22ac,代入c=acos B,

  得c=a•a2+c2-b22ac,∴c2+b2=a2,

  ∴△ABC是以A为直角的直角三角形.

  又∵b=asin C,∴b=a•ca,∴b=c,

  ∴△ABC也是等腰三角形.

  综上所述,△ABC是等腰直角三角形.

《余弦定理训练题_高二数学.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
标签云
一键复制下载文档联系客服
年会员
每天99次下载
5元/365天
直接下载
单次下载
0.1元/次
微信支付
支付宝支付
欢迎使用微信支付
扫一扫支付
金额:
常见问题

请登录之后再下载!

下载中心

您的账号注册成功!密码为:123456,当前为默认信息,请及时修改

下载文件立即修改

帮助中心

如何获取自己的订单号?

打开微信,找到微信支付,找到自己的订单,就能看到自己的交易订单号了。

阅读并接受《用户协议》
注:各登录账户无关联!请仅用一种方式登录。


用户注册协议

一、 本网站运用开源的网站程序平台,通过国际互联网络等手段为会员或游客提供程序代码或者文章信息等服务。本网站有权在必要时修改服务条款,服务条款一旦发生变动,将会在重要页面上提示修改内容或通过其他形式告知会员。如果会员不同意所改动的内容,可以主动取消获得的网络服务。如果会员继续享用网络服务,则视为接受服务条款的变动。网站保留随时修改或中断服务而不需知照会员的权利。本站行使修改或中断服务的权利,不需对会员或第三方负责。

关闭