圆是初中几何教学中的重要内容,下面是由学习啦小编分享的初中有关圆的知识点,希望对你有用。
初中有关圆的知识点
1. 点与圆的位置关系及其数量特征:如果圆的半径为r,点到圆心的距离为d,则
①点在圆上 <===> d=r; ②点在圆内 <===> d d>r.
二. 圆的对称性:
1. 与圆相关的概念:
④同心圆:圆心相同,半径不等的两个圆叫做同心圆。
⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。
⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。
⑦圆心角:顶点在圆心的角叫做圆心角.
⑧弦心距:从圆心到弦的距离叫做弦心距.
2. 圆是轴对称图形,直径所在的直线是它的对称轴,圆有无数条对称轴。
3. 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:
①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。
上述五个条件中的任何两个条件都可推出其他三个结论。
4. 定理:在同圆或等圆中,相等的圆心角所对弧相等、所对的弦相等、所对的弦心距相等。
推论: 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.
三. 圆周角和圆心角的关系:
…… 此处隐藏1008字 ……
2.如圆中有直径的条件,可作出直径上的圆周角.
3.如一个圆有切线的条件,常作过切点的半径(或直径)为辅助线.
4.若条件交代了某点是切点时,连结圆心和切点是最常用的辅助线.
十. 圆内接四边形
若四边形的四个顶点都在同一个圆上,这个四边形叫做圆内接四边形,这个圆叫做这个四边形的外接圆.
圆内接四边形的特征: ①圆内接四边形的对角互补;
②圆内接四边形任意一个外角等于它的内错角.
以上是由小编分享的初中有关圆的知识点全部内容,希望对你的考试有帮助。