解三角形专项练习以及答案_高三数学

时间:2018-04-18 10:08:05 作者: 字数:5175字

  一般地,把三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素。已知三角形的几个元素求其他元素的过程叫做解三角形。以下是小编为大家推荐关于 高三 数学 的解三角形专项练习以及答案,欢迎阅读!

  解三角形专项练习以及答案

  一、选择题

  1.在△ABC中,sinA=sinB,则△ABC是(  )

  A.直角三角形B.锐角三角形

  C.钝角三角形D.等腰三角形

  答案 D

  2.在△ABC中,若acosA=bcosB=ccosC,则△ABC是(  )

  A.直角三角形B.等边三角形

  C.钝角三角形D.等腰直角三角形

  答案 B

  解析 由正弦定理知:sinAcosA=sinBcosB=sinCcosC,

  ∴tanA=tanB=tanC,∴A=B=C.

  3.在△ABC中,sinA=34,a=10,则边长c的取值范围是(  )

  A.152,+∞B.(10,+∞)

  C.(0,10) D.0,403

  答案 D

  解析 ∵csinC=asinA=403,∴c=403sinC.

  ∴0

  4.在△ABC中,a=2bcosC,则这个三角形一定是(  )

  A.等腰三角形B.直角三角形

  C.等腰直角三角形D.等腰或直角三角形

  答案 A

  解析 由a=2bcosC得,sinA=2sinBcosC,

  ∴sin(B+C)=2sin Bcos C,

  ∴sin Bcos C+cos Bsin C=2sin Bcos C,

…… 此处隐藏1381字 ……

  由正弦定理得c=asinCsinA=107,

  所以S△ABC=12acsinB=12×2×107×45=87.

  1.在△ABC中,有以下结论:

  (1)A+B+C=π;

  (2)sin(A+B)=sin C,cos(A+B)=-cos C;

  (3)A+B2+C2=π2;

  (4)sin A+B2=cos C2,cos A+B2=sin C2,tan A+B2=1tan C2.

  2.借助正弦定理可以进行三角形中边角关系的互化,从而进行三角形形状的判断、三角恒等式的证明.

《解三角形专项练习以及答案_高三数学.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
标签云
一键复制下载文档联系客服
月会员
每天99次下载
3元/30天
直接下载
单次下载
0.1元/次
微信支付
支付宝支付
欢迎使用微信支付
扫一扫支付
金额:
常见问题

请登录之后再下载!

下载中心

您的账号注册成功!密码为:123456,当前为默认信息,请及时修改

下载文件立即修改

帮助中心

如何获取自己的订单号?

打开微信,找到微信支付,找到自己的订单,就能看到自己的交易订单号了。

阅读并接受《用户协议》
注:各登录账户无关联!请仅用一种方式登录。


用户注册协议

一、 本网站运用开源的网站程序平台,通过国际互联网络等手段为会员或游客提供程序代码或者文章信息等服务。本网站有权在必要时修改服务条款,服务条款一旦发生变动,将会在重要页面上提示修改内容或通过其他形式告知会员。如果会员不同意所改动的内容,可以主动取消获得的网络服务。如果会员继续享用网络服务,则视为接受服务条款的变动。网站保留随时修改或中断服务而不需知照会员的权利。本站行使修改或中断服务的权利,不需对会员或第三方负责。

关闭